Sam之前在提供BTX库时,需要提供一个 BTX.h文件。按照标准头文件的写法:
#ifndef _BTX_H
#define _BTX_H
#ifdef __cplusplus
extern "C" {
#endif
//xxxxxx
extern functionA();
#ifdef __cplusplus
}
#endif
#endif
也就是说:将所有function 声明和 struct定义全放在里面了。但corner建议只将function声明放在其中。并且,不需要再次声明:extern functionA();
所以研究一下#extern "C"
众所周知:
#ifndef _BTX_H
#define _BTX_H
//xxxx
#endif
编译宏用来防止重复引用。
下面将仔细研究#extern.(这部分引用CSDN:keen资源,觉得他讲的足够清楚了)
extern 作用1:声明外部变量
现代编译器一般采用按文件编译的方式,因此在编译时,各个文件中定义的全局变量是
互相透明的,也就是说,在编译时,全局变量的可见域限制在文件内部。
例1:
创建一个工程,里面含有A.cpp和B.cpp两个简单的C++源文件:
//A.cpp:
int iRI;
int main()
{
//.....
}
//B.cpp
int iRI;
gcc A.cpp -c
gcc B.cpp -c
编译出A.o, B.o都没有问题。
但当gcc A.o B.o -o test时,
main.o:(.bss+0x0): multiple definition of `iRI'
b.o:(.bss+0x0): first defined here
报错:重定义。
(但Sam有个非常意外的发现:当同样的代码,使用A.c B.c.并使用gcc编译时,竟然不会报重定义的错误,非常不明白是怎么回事。)
这就是说,在编译阶段,各个文件中定义的全局变量相互是透明的,编译A时觉察不到B中也定义了i,同样,编译B时觉察不到A中也定义了i。
但是到了链接阶段,要将各个文件的内容“合为一体”,因此,如果某些文件中定义的全局变量名相同的话,在这个时候就会出现错误,也就是上面提示的重复定义的错误。因此,各个文件中定义的全局变量名不可相同。
但如果用下列方式:在B.cpp中定义iRI;在A.cpp中直接使用。则编译A.cpp时就无法通过。
//A.cpp
int main()
{
iRI=64;
}
//B.cpp
int iRI;
gcc A.cpp -c
was not declared in this scope.
因为编译器按照文件方式编译,所以编译A.cpp时,并不知道B.cpp中定义了iRI。
也就是说:文件中定义的全局变量的可见性扩展到整个程序是在链接完成之后,而在编译阶段,他们的可见性仍局限于各自的文件。
解决方案如下:
编译器的目光不够长远,编译器没有能够意识到,某个变量符号虽然不是本文件定义的,但是它可能是在其它的文件中定义的。
虽然编译器不够远见,但是我们可以给它提示,帮助它来解决上面出现的问题。这就是extern的作用了。
extern的原理很简单,就是告诉编译器:“你现在编译的文件中,有一个标识符虽然没有在本文件中定义,但是它是在别的文件中定义的全局变量,你要放行!”
//A.cpp:
extern int iRI;
int main()
{
iRI = 64;
//.....
}
//B.cpp
int iRI;
这样编译就能够通过。
extern int iRI; //并未分配空间,只是通知编译器,在其它文件定义过iRI。
extern 作用2:在C++文件中调用C方式编译的函数
C方式编译和C++方式编译
相对于C,C++中新增了诸如重载等新特性。所以全局变量和函数名编译后的命名方式有很大区别。
int a;
int functionA();
对于C方式编译:
int a;=> _a
int functionA(); => _functionA
对于C++方式编译:
int a; =>xx@xxx@a
int functionA(); => xx@xx@functionA
可以看出,因为要支持重载,所以C++方式编译下,生成的全局变量名和函数名复杂很多。与C方式编译的加一个下划线不同。
于是就有下面几种情况:
例2:C++调用C++定义的全局变量
//A.cpp:
extern int iRI;
int main()
{
iRI = 64;
//.....
}
//B.cpp
int iRI;
gcc A.cpp -c
gcc B.cpp -c
gcc A.o B.o -o test
那么在编译链接时都没问题。
例3:C++调用C定义的全局变量
//A.cpp:
extern int iRI;
int main()
{
iRI = 64;
//.....
}
//B.c
int iRI;
编译时没有问题,
gcc A.cpp -c
gcc B.c -c
但链接时,gcc B.o A.o -o test
则会报iRI没有定义。为什么呢?
因为gcc看到A.cpp,就使用C++方式编译,看到B.c,就使用C方式编译。
所以在A.cpp中的iRI=>XXX@XXX_iRI;
而B.c中iRI=〉_iRI;
所以在链接时,A.cpp想找到XXX@XXX_iRI,当然找不到。所以就需要告诉编译器,iRI是使用C方式编译的。
//A.cpp:
extern "C"
{
int iRI;
}
int main()
{ iRI = 64;
//.....
}
//B.c
int iRI;
这样,当编译A.cpp时,编译器就知道iRI为C方式编译的。就会使用 _iRI。这样B.c提供的_iRI就可以被A.cpp找到了。
例4:C++调用C定义的function
//A.cpp
extern int functionA();
int main()
{
functionA();
}
//B.c
int functionA()
{
//....
}
gcc A.cpp -c
gcc B.c -c
都没有问题。但同样的,gcc A.o B.o -o test
则报错,找不到functionA();
这是因为gcc将A.cpp认为是C++方式编译,B.c是C方式编译。
所以functionA在B.c中为:_functionA. 在A.cpp中为:XX@XXX_functionA
所以在链接时A.cpp找不到XX@XX_function.
于是需要通知编译器,functionA()是C方式编译命名的。
//A.cpp
extern "C"
{
int functionA();
}
int main()
{
functionA();
}
//B.c
int functionA()
{
//....
}
于是,编译链接都可以通过。
Sam的具体应用:
另外:Sam这次是写了一个Linux 下Bluetooth库。libBTX.so. 这个库需要C,C++都可以使用。
但Sam这个库是C方式编译的。libBTX.so下,functionA()=>_functionA
所以C程序调用时没有问题,C++则会有问题。
所以需要在这个库提供的头文件中加入:
#ifndef _BTX_H
#define _BTX_H
#ifdef __cplusplus
extern "C" {
#endif
//xxxxxx
#ifdef __cplusplus
}
#endif
则当C程序下使用这个库时,
#include "BTX.h"
因为是C方式编译,所以不会进入#ifdef __cplusplus
当C++程序调用这个库,
#include "BTX.h"
则C++编译器可以进入#ifdef __cplusplus
所以extern "C"被启用。
这表示下面BTX所提供的function为C方式编译的。则C++程序也能够将functionA()编译为_functionA.这样就可以找到libBTX.so所提供的function.
最终结论:
Corner所得很对,只需要把function()放在extern "C" { ....} 内,但Sam的做法好象也没错。因为很多Linux程序也是这样做的。
同时,
extern "C"
{
functionA();
}//不止是声明,并且还指出:这个function请用C方式编译。所以不需要再次extern.
所以Corner的建议也是非常有道理的。
exter "C"
{
extern functionA();
}//这样做没什么太大意义。
没有评论:
发表评论